
8.2

A Geographically Distributed Framework
for Embedded System Design and Validation

Ken Hines and Gaetano Borriello

Department of Computer Science & Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350

{hliieskj , gaetano}acs. Washington. edn

Abstract

The difficulty of embedded system co-design is increasing rapidly
due to the increasing complewity of mrftvidual parts, the variety of
parts avaUabte and pressure to use multiple processors to meet per-
formance criteria. Validation tools should contain several features
in order to keep up with this trend, including the ahilHy to dy-
namically change detail levels, built in protection for intellectual
property, and support far gradual migration of functionality from
a simulation environment to the real hardware. In this paper, we
present our approach to the problem which includes a geographically
distribuled co-simulation framework. This framework is a system
of nodes such that each can include either portions of the simula-
tor or real hardware. In support of this, the framework includes a
mechanism for maintaining consistent versions of virtual time.

1 Introduction

Embedded system co-design is becoming increasingly diffi-
cult due to a number of factors:

• Performance criteria are harder to meet with single pro-
cessor designs, suggesting that multi-processor designs
should become more common. Unfortunately there are
almost no took available that address the specific issues
of these sorts of systems.

• Individual components (both hardware and software)
in an embedded systems design are theiMelves becom-
ing more complex, and problems that occur because of
subtle interactions may not show up until the entire
system is assembled.

• Many off-the-shelf solutions that could be used in an
embedded system design are becoming available. How-
ever, it k difficult for a designer to evaluate these in the
context of a specific system.

To address these issues, we identify several desirable fea-
tures for an embedded system validation framework. First,

This work was supported hy ARPA contract DAAH04-04-G-0272 and
a Mentor Graphics graduate fellowship

Penmssion to make digital/hard copy of all or part of this work for personal or
dassioom use is granted wittiout fee provided that copies are not made or distrib-
uted for profit or conunerdal advantage, the copyright noHce, the ttUe of Ihe publi-
cation and its date appear, and notice is given that copying is by pcnnission of ACM,
Inc. To copy otherwise, to republish, to post on serveis or to redistribute to lists,
requires prior specific permission and/or a fee.
DM: 98. San Rimicisco, CaJifoniia
©1998 ACM 0-89791-964-S»8/06.,$5.00

it should allow the designer to view aU parts of the system,
including hardware and software, at several levels of detail -
both in behavior and in communication and to dynamically
switch between these detail levels. Second, it should facil-
itate the inclusion of intellecttial property (IP), such as al-
gorithms, new processors, special purpose ICs, etc. withottt
compromising the internals of the IP. Third, it should sup-
port geopaphically distributed design groups and as well as
tools which may also be geographically distributed. Fourth,
it shotdd allow the system ftmctionality to be gradually mi-
grated to physical hardware while still allowing the entire
system to be modeled with the newly included hardware.
Finally, it should include debugging support for the parts
of the system that are in hardware, the parts in software,
the parts that are in simulation, as well as the system as a
whole.

Most of these have been individually addressed, for ex-
ample. Mentor Graphics' Seamless CVE [9], Viewlogic's Ea-
glel [5], and the previous version of Pia all allow dynamic
changes in the detail levels. Viper technology allows the
use of IP in simulation, through use of encrypted, unsyn-
thesizable models. There is also research into including ac-
tual hardware in simulation, for example, the UWTester [10],
CATFISH [11] and Eaglel.

In this paper, we present the approach taken in Pia, the
co-simulator of the Chinook project [3, 12]. Pia provides
a distributed hardware-software co-simulator and tools for
schematic capture as well as a means of connecting these
to synthesis tools and actual hardware. To improve the
speed of simulation and to reduce network bandwidth, Pia
allows for mtiltiple levels of detail and provides a mecha-
nism for dynamically switching between them. There are
other projects involving firauneworks for geographically iis-
tributed electronic design, such as WELD [1], but Pia differs
from these in that its primary focus is in faciUtating hard-
ware/software co-design through geographically distributed
co-simulation and in integrating remotely located hardware
into a co-simulation environment (rather than in facilitating
distributed design of arbitrary hardware)

Parts vendors have already begtin to use the Internet to
provide users with access to parts for evaluation. Intel, for
example now has a remote evaluation facility [8] that permits
designers to evaluate various i960 processors over the web.
Users can enter, compile and run programs on the desired
processor and observe the results - all over the web.

The Pia framework pushes this concept a little farther
and allows the user to patch web based components into a
simulated circuit for more extensive evaluation.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

140

20030812 203

I The Pia system

The Pia simulation system is a set of Pia nodes that can
oe interconnected through a network. Each node contains a
Qumber of sockets and each socket can facilitate a connection
to a design tool such as a simulator or a compiler, or a de-
vice such as a processor, an ASIC or an FPGA. Design tools
can have built in support for Pia sockets (as do all the Chi-
nook tools), but if not, the tools can be connected through
a customized wrapper. The Pia system maintains consis-
tent versions of virtual time for all simulator and hardware
components, regardless of where they are physically located.
Fig. 1 shows an example system with several items connected
together.

Fig. 1: Several Pia nodes connected through the Internet. This shows
how simulator subsystems, user interfaces etc. are connected together

A distinguishing feature of Pia is its abiUty to dynami-
cally alter the level of detail represented by the simulator at
runtime. In order for this to work, the simulator must have
instructions (either stored in a library, or provided by the
user) to guide it through each of the beisic communication
actions at several levels of detail. These basic actions can
include anyiihing from putting a byte of data on a bus to
sending a complete packet across a network. This can be
a big advantage when the communication occurs between
components that are not located on the same host since it
allows the designer to reduce the communication bandwidth
at times when detail isn't required. Given several communi-
cation methods for each action, Pia can dynamically switch
between them at safe points in the execution, that is points
in the method where the state of the interface is stable and
consistent.

We are in the process of building a library of standard
communication protocols, each with several built-in detail
levels. In the cases where the user must provide additional
instructions for levels of detail not currently in any library,
we allow these to be entered as a set of assertions which de-
scribe the activating conditions, and results of any action [7].

2.1 Pia on a single host

This section gives a brief overview of Pia's operation on
a single host. It is intended to provide background for
the distributed version of Pia, but for the complete details
see [6]. From the designer's point a view, a system simu-
lated through Pia consists of components, interfaces, ports

and nets. Components are containers for some basic func-
tionality, interfaces connect components to ports, and ports
are interconnected through nets. A component would typi-
cally be used to represent such things as embedded proces-
sors running programs, ASICs, FPGAs, and so forth. Cur-
rently in Pia, processors running software are represented by
a component which has as its behavior the actual software
(in Java) that would run on the embedded software. Specific
processors are characterized by their timing characteristics
(in the form of a basic block timing estimator) and by their
external interfaces. Currently, the basic block timing esti-
mation is performed by hand, but we hope to eventually take
advantage of other research in this area. Basically, the tim-
ing estimates are embedded in the source code, and when
the simulator encounters one of these, it updates a version
of virtual time. There is no reason that the component can't
be an instruction set simulator of a particular processor, but
we have not yet devoted any effort to either implementing
such components or adapting an existing ISS to Pia.

The single host version of Pia uses a two level hierarchal
view of virtual time which includes a system time as well
as local times for each component. When a component is
activated, it is allowed to continue until it is ready to receive
a value from another component. When this happens, the
component must pause until until system time equals its
own local time. System time is always required to be less
than or equal to all local times, so that when a component
is restarted, it is certain that its view of the world is up to
date.

5.1.1 Synchronization between components

This technique works without any problems when the re-
ceiving component heis distinct modes for data receipt and
for computation. Many components fit this model, for ex-
ample, reactive components, components that poll for new
data, and so forth. This model can also work fairly well for
components where the phases are less distinct (for example,
where the data might be received during the computational
phase through an interrupt).

If we can statically determine which addresses in a pro-
cessor's local memory are either written or read by inter-
rupt handlers, we can statically mark those locations as syn-
chronous. This means that the component will have to en-
sure that its local time matches system time when it reads or
writes to any of these locations (this is the same requirement
we apply to all receives).

If we cannot statically determine such addresses, the simu-
lator can make the optimistic assumption and treat all mem-
ory as safe. When the system detects a violation of this as-
sumption it can dynamically mark the relevant addresses as
synchronous, then rewind using Pia's checkpoint and restore
facilities.

5.1.2 Checkpoint and restore facilities

The idea behind Pia's checkpoint and restore facihties is that
components occasionally store images of their state at par-
ticular points in the execution. On encountering consistency
problems, the simulator can restore previous images and re-
execute more conservatively, as we demonstrated in the dis-
cussions on interrupts above. Although Pia's current check-
point facility saves complete component images, we plan to
look into incremental checkpoints at some point in the fu-
ture. A checkpoint request does not require all components

141

to save images with the same local time, instead components
save at the earliest local time possible after the request.

These semantics introduce the danger of a domino effect
hazard (13], This effect occurs it it's possible for a state
restoral to require any component to load more than one
checkpoint to obtain a causally consistent state. In the worst
case, this can force all processes to roll back to their initial
state. We avoid this by requiring each component to save a
checkpoint before receiving any messages after a checkpoint
request fromi the schedvder. This prevents any messages from
the future of the checkpoint on one component from influ-
encing the state before the checkpoint on another.

2.1.S Switching detail levds

Changes in detaul levels or runleveh are triggered by any one
of three things. First - the user may have directly altered a
runlevel (usually through a detail level slider) second, there
may be a switchpoint defined in the simulation run control
file, and third, the designer may have included imperative
runlevel switch statements in the source code. A switchpoint
is an expression of the form S<condition>:<action> that
tells the simulator when and how to change runlevels. An
exaunple of a switchpoint follows:

8I2CComponent. localTiBie>=67.0:
I2CComponent->har<lwareLevel,

VldCamCoiiipDnent->byteL6Tel

This telb the simulator that as soon as it finds that
"KCComponent" shows a localtime of 67 or later, it should
change the runlevel of I2CComponent to "haidwareLevd"
and the runlevel of VidCamComponent to "byteLevel". This
particular switchpoint seems unusual since it is based only on
BCComponent's version of virtual time. There is no way of
knowing what time VidCamComponent will think it is when
the switch occurs. The condition can include conjuncts and
disjuncts of conditions across multiple components.

2,2 Pia nodes and subsystems

As we described it esurlier, a Pia system is a collection of dis-
tributed Pia nodes, with interconnections being determined
at runtime. Each Pia node contains one or more subsystems
and each subsystem contains some fragment of the embed-
ded system design under test. Associated with each subsys-
tem is a scheduler object, which is primarily responsible for
enforcing the local timing semantics. By itself, a Pia node
with a single subsystem behaves very much like the single
host version of Pia described earlier. Its primary duty is to
schedule components and to ensure that the subsystem time
is always less than or equal the local times of all components
in the subsystem.

Currently, components, interfaces and ports are aU
atomic. In other words, components, interfeces and ports
will all be contained in a single subsystem.

&,2.1 Interconnection of subsystems

Pia nodes sure interconnected through Java's RMI interface.
Each node serves as both a client and a server, and handles
all inter-node communication so that it is hidden from the
user. Since nets are the only user object that can be split
across subsystems, they are the only objects that require
any special handling. A net that connects components on
two different subsystems is spHt into two nets, one for each

subsystem, and each net includes an extra (hidden) port that
connects bus events to the subsystem upon which it resides.

Between each pair of communicating subsystems is a
channel, across which all communication occurs. Each chan-
nel is associated with a pair of dummy components (one on
each subsystem). Each of the hidden ports is the property
of one of these channel components. In essence, each change
in net's value is registered with the corresponding channel
component, and the component is responsible for performing
any required actions.

Channel components are not self contained, rather, they
are proxies for the subsystems on the opposite side of the
channel. As such, they may be responsible for coordinat-
ing run levels between the components, as well as insuring
the consistency of time across channels. Channel compo-
nents do not have a thread of their own, but instead use the
subsystem's own thread.

Designers wew of ^stem

■ ■ I ■
Topology of system under simulrton

l%sulssystena

\ ■--/:-

Pig. 2: A pair of Pia subsystems. This figure shows a channel and a
pair of channel components which perform interfacing between nodes.
The daric net is split between the subsystems

Fig. 2 shows how this works. The dark net in the top
picture is spUt across two subsystems, so hidden ports and
channel components are introduced into the split. When
moving a set of components from one subsystem to another,
the split in the relevant nets can be determined by a cut
of the component graph. Essentially, a boundary is drawn
around all components that are moved, and any net that
crosses this boundary is spht. If performed repeatedly and
locally, this could force some nets to pass through subsys-
tems which contain no components relevant to the net, so a
global view of the system must be consulted when perform-
ing each split.

S.g.S Managing virtual time between different nodes

In general, it isn't possible to both maximize parallelism
and guarantee continuous system consistency. The reason
for this is that in order to guarantee system consistency, no
subsystem is allowed to have a virtual time that is later than
the time-stamp of a message that has not yet been dehvered
to the appropriate component. Since messages arrive asyn-
chronously, we don't know in advance when this may hap-
pen, so to maintain consistency, we must be conservative
and allow a subsystem to advance only when we aie cer-
tain that no messages will arrive with an earher time-stamp.

142

Subsyslem 1 "*
Local tiroe = 30 Local time = 40

1 1
Local llme« 50 1

L4K:al time ■ 20
C4

Subsyste m time = 20?

Subsystem 2

Subsystem lime = 10

Fig. 3: Subsyatemi must stall to maintain continuous consistency.

On the other hand, if we want to maximize parallelism, no
subsystem may stall unless it will receive a message with a
time-stamp that is equal to or later than subsystem time. In
the general case, this would require clairvoyance.

This is true even if all components in the subsystem have
distinct modes for computation and reception of data. Fig. 3
shows a system in which all components in Subsystemi are
blocked until subsystem time catches up. If this were a single
host simulator, the subsystem would be able to advance its
own virtual time to 20, and activate component C^. In this
case if it does that, there may be a consistency violation
because Subsystems may send a value to d with a time-
stamp of, say, 15. If our goal is to maintain consistency.
Subsystem^ can do no work until we are certain Subsystems
will not send any messages with a time-stamp less than 20,
even though all components in Subsystemi have a distinct
receive phase, it still needs to wait for Subsystems-

If there isn't much communication expected between sub-
systems, it is often reasonable for a subsystem to continue
as if there were no asynchronous messages, but to save state
occasionally. If any such messages occur, then the affected
subsystem must restore a previously saved copy of system
state, and continue from there.

Pia allows for both possibilities through conservative and
optimistic channels. The rule is that a processor cannot
proceed past the time on a conservative channel unless it is
certain that it will not receive any messages on this channel
with time-stamps earlier than its local time.

2.S-3 Conservative Channels

Before a subsystem can advance its version of virtual time, it
must first maJce sure that no conservative channels wiU send
it any messages with an earlier time-stamp. To ensure this,
each subsystem can request a safe time from the subsystem
on the far end of the channel. The safe time of component
Ci indicates the latest time to which the opposite subsystem
is allowed to advance to without consulting Ct again.

This is illustrated in Fig. 4. If SSi is ready to advance its
own subsystem time it must first get safe times from both
SSs and SS3. Once it has these, it must compare these to
the time value of the next event it has scheduled. If the
event time is less than all the reported safe times, SSi is
allowed to advance its own system time to the value of the
event, and deUver it.

The time a subsystem reports is essentially its own sub-
system time with all restrictions from the opposite processor
removed. If this were not the case, there would be deadlock,
since no subsystem would be allowed to advance its subsys-
tem time at all. A set of interconnected subsystems must
make a directed graph with only simple cycles. A simple
cycle is simply a bidirectional edge. The reason for this is

SS: H 1 ■ ■

■nil'

■

f

Fig. 4: Three subsystems are shown

that it is computationally hard to eliminate self-restriction
on the fly for general graphs.

2.2.4 Optimistic Channels

Subsystems hnked by optimistic channels are not restricted
from updating their virtual time beyond the safe time of the
subsystem on the opposite side of the channel. For exam-
ple, if chsmnel C12 were an optimistic channel, S5i would
only need to consult 553 before advancing local time. This
requires each subsystem to occasionally save state so that it
can fully recover if a consistency error occurs. This is usually
covered by the interrupt checkpoint and restore mechanism,
so the only impact could be more expensive restores if opti-
mistic channels are poorly placed.

2.5.5 Managing checkpoints in distributed Pia

As we mentioned above, a checkpoint and restore system
that does not require all components to save state simulta-
neously risks a domino effect. Although this is straight for-
ward for single host Pia, we need to address the issue again
when we distribute the simulator. This is because there may
be some delay between the time when the scheduler requests
a checkpoint, and all components receive the request.

Since all channels between subsystems are FIFO chan-
nels, we can solve this problem with the Chandy-Lamport
algorithm [2]. After a subsystem receives (or generates) a
checkpoint request, it performs a local checkpoint and trcins-
mits a mark on all of its outgoing channels. Upon receipt
of a mairk, a subsystem immediately performs a local check-
point, before receiving anything else on that same channel.
Following this, before transmitting ansrthing else on a par-
ticular outgoing channel, the subsystem sends a mark. To
ensure that each subsystem performs the local checkpoint
only once per request, each mark contains an identifier, and
that identifier is also sent with each mark generated in re-
sponse, such that a subsystem can ignore marks with that
have the same identifier as checkpoints already performed.

143

2.3 Connecting Pia to real hardware 3.2 The Pia class loader

Adding real hardware to a simulation requires a hard-
ware/software stub to be attached to the hardware through
some means. One possibiUty is to use a DEC Pamette
board [4] to provide the hardware side of this, and the soft-
ware side could be written using the Pamette control library.
This hardware/software stub serves to match semantics be-
tween the hardware and the simulator, and must provide
certain functionaUty:

• It must be able to set and read time on the hardware.
The setting of time could be implemented as software
translation of asctual time given by the hardware.

• It must be able to either stall or otherwise idle the
hardware.

• It must be able to buffer interrupts generated by hard-
ware and pass these up to the simulator.

All of these functions could be implemented in software if
the hardware allows the user to start the clock and stop it
after a measxired number of ticks, but this is likely to be the
case only if the hardware was designed with connection to
Pia in mind.

Connecting Pia to an actual embedded processor can be
greatly faciUtated by small server which resides on the em-
bedded system. If the system already includes a Java virtual
machine, then this is fairly straightforward and the stub can
allow migration of objects from a simulated component the
actual component.

3 Implementation in Java

There are a number of reasons that caused us to choose Java
as the implementation language for Pia including Java's built
in support for concurrent threads, distribution, and flexible
loading of modules.

3.1 imposing the Pia scheduling semantics on the Java
VM

Since Java is a threawied language, it would seem natural
to use the Java VM's thread package to provide for concur-
rence between components. In general, however, this would
mean adopting the scheduling semantics of the VM. Since
the scheduler offers no scheduling guarantees, (if there are
two runnable threads with different priorities, the scheduler
will occasionally run the thread with the lower priority) they
are inappropriate for use in Pia.

An EJtemative to this is to essentially define a scheduler
class that chooses which thread to run, and then tricks the
VM scheduler into running that thread. There are a couple
of ways we can do this, both based on ensuring that that
the VM scheduler finds only one rimnable thread at a time.
First of all, we can have the scheduler suspend all threads,
and resume only the one that should be running. The other
way is to have all the threads queue up on mutexes and
have the scheduler signal the one it wants to run. The latter
method is the one used in Pia although the former should
be equivalent.

The class loader used in Pia is designed to allow a user to
recompile and reload a component without having to restart
the simulator. Pia's class loader is able to load compo-
nents on demand from arbitrary URLs on the Internet. If
a class cannot be found through the custom channels, Pia
iises Java's built in class loader.

4 An example embedded system

We now introduce an example system which we will use to
further illustrate the concepts of this paper, and to obtain
some performance metrics. The example we will use is the
"WubbleU" application, a suggested benchmark for embed-
ded system design tools [14]. WubbleU is essentiaEy a hand
held Web Browser, or, more accurately, a Web Browser that
consists of a hand held unit and a wireless connection to
a dedicated server. The specification allows for a cert^n
amount of flexibiUty in assigning tasks to the server or hand-
held unit. In fact, that is something a designer may want
play with, given available parts and software modules.

An implementation of WubbleU can contain several forms
of Intellectual .Property. For example there may be special
integrated circuits (GSM chips, JPEG chips), software (Java
VMs, Handwriting recognition software), as weE as various
compression and communication algorithnw. Also, it is likely
that some parts of the hardware will be ready before oth-
ers and possible that a designer would Uke to try various
synthesis tools.

Fig. 6: A communication flow diagram for the WubbleU Ijandljeld
web browser

Pig. 5 shows a high level conuaunication graph of the mod-
ules in WubbleU. The nodes in this graph may be imple-
mented in either hardware or software. We will focus on an
a particular implementation that includes a simple cellular
connection to a server which coimects to the Internet, and
most of the ftmctionality is on the handheld unit. This is
not necessarily the best implementation, but it works for the
purposes in this paper.

The cellular coimection is controlled by an ASIC which
transfers packets to the system through DMA. This chip is
our candidate for remote operation. Fig. 6 shows a blo<i di-
agram of this circuit, as well as the topology of this circuit on

144

Location Detail level simulation time
N/A HotJava .54 seconds
loc£d word passage 130.2 seconds
local packet passage 43.1 seconds

remote word passage 604 seconds
remote packet passage 80.3 seconds

Tab. 1: Time and simulation overhead on Beveral configurations of
the WubbleU example

the simulator. In this architecture, all processes are mapped
to the processor, with the exception of whe network interface
which was mapped to the cellular communication chip. In
this case, both Pia nodes were running on Linux/Pentium
Pro 200MHz work stations, both on the same subnet. Ide-
ally, we would like to perform this experiment using the real
hardware, but we are do not yet have any functional hard-
ware servers. Besides, the main point of this experiment is
to show that even with reduction in simulation performance
introduced by the Internet we can still obtain reasonable
overall performance by changing abstraction levels for this
link.

f iili«>i(w ImiHifciw

Fig. 6: A possible architecture for the WubbleU system, and it's sim-
ulation topology

The test performed is the loading of the Pia homepage
(http://www.cs.washington.edu/homes/hineskj/Pia.html)
which contains approximately 66KB of data, including
graphics. For comparison, we also timed loading this page
with Sun's HotJava browser which we use as a rough
reference for estimating simulation overhead in each case.
The transfer modes that we used for each of the simulation
tests were word passage where individual four byte words
were passed across the network, and packet passage where
the data was sent across the channel in 1KB packets. These
same modes were used for local testing, where all parts of
the simulation are in a single subsystem, and the results are
all shown in Table 1.

We notice that there is a large performance hit in all the
simulation, but that is to be expected. The loading time un-
der the remote packet passing abstraction level is actually
quite reasonable, and is actually fast enough to allow the de-

signer to play with the simulated hardware. The reason that
the performance improvement is much less drsimatic when
all components are simulated locally is because communi-
cation between the other components is still rendered with
a high level of detail. It's possible, given specification style
and detail level, that this local performance could approach
that of HotJava.

5 Conclusions and Future work

We believe that a geographically distributed environment for
coordination design effort and validation of embedded sys-
tems is an important addition to the designers repertoire of
tools. Although this solution could conceivably cause prob-
lems with performance, we showed how the principles of se-
lective focus introduced in [6] cein be used to offset this.

Current work is in the extension of Pia to include a de-
bugger and changing the checkpoint mechanism to use in-
cremental rather than total checkpoints. Additional current
and future work involves setting up Pia socket versions of
hardware servers, and building additional examples.

References
[1] CHAN, F. L., SPILLER, M. D., AND NEWTON, A. R. Weld - an

environment for web-based electronic design. In Proceedings of
the 35th Annual Design A-utomation Conference (1998).

[2] CHANDY, K., AND L., L. Distributed snapshots: Determining
global states in distributed systems. ACM Transaciiona on
Computer Sj/stems 3, 1 (1985), 63-75.

[3J CHOU, P., AND BORRIELLO, G. Software architecture synthesis for
retargetable real-time embedded systems. In Codea/CASHB '97
(1997).

[4] DEC Pamette Board http://www.research.digital.com/SRC/pamette/.

[5] http://www.viewlogic.com/products/eagletools.html.

[6] HINES, K., AND BORRIELLO, G. Dynamic communication models
in embedded system co-simulation. In Proceedings of the 34th
Design Avtomation Conference (June 1997).

[7] HiNES, K., AND BORRIELLO, G. Optimizing communication in
hardware-software co-simulation. In Codes/CASHE '97 (1997),
IEEE, ACM.

[8] Intel Remote Evaluation Facility,
http://developcr.intel.com/dcsign/i960/te8tcntr/
ref/INDEX.HTM.

[9] KLEIN, R. Miami: a hardware software co-simulation environ-
ment. In Proceedings. Seventh IEEE International Workshop
on Rapid System Prototyping. Shortening the path from spec-
ification to prototyping (June 1996).

[10] MCKENZIE, N. R., EBELING, C, MCMURCHIE, L., AND BORRIELLO,

G. Experiences with the mactester in computer science and engi-
neering education. IEEE Transactions on Education. (February
1997), 12-21.

[11] MUELLER, A., GROETKER, T., POST, G., AND MEYR, H. Catfish
- a configurable atm testbench for interfacing simulation and
hardware. DATE'98 (1998).

[12] OBTEGA, R., AND BORRIELLO, G. Communication synthesis for
embedded systems with global considerations. In Codes/CASHE
'97 (1997).

[13] RUSSELL, D. L. State restoration In systems of communicating
processes. IEEE Transactions of Software Engineering SE-6, 2
(Mi>rrh l»Sn), 18S-1B4.

[14] WubbleU hand held PDA benchmark for co-design,
http://www.it.dtu.dlc/jan/WubbleU.

145

